A major new discovery about the structure of DNA molecules has been announced. Researchers have found there is a pattern to the organization of nucleosomes in DNA, which may explain why certain parts of the moleculare are accessible or inaccessible to transcription. This in turn may help explain how certain genes are conserved in nature, and why certain parts of the DNA molecule are more or less vulnerable to mutation and modification.
DNA - the long, thin molecule that carries our hereditary material - is compressed around protein scaffolding in the cell nucleus into tiny spheres called nucleosomes. The bead-like nucleosomes are strung along the entire chromosome, which is itself folded and packaged to fit into the nucleus. What determines how, when and where a nucleosome will be positioned along the DNA sequence? Dr. Eran Segal and research student Yair Field of the Computer Science and Applied Mathematics Department at the Weizmann Institute of Science have succeeded, together with colleagues from Northwestern University in Chicago, in cracking the genetic code that sets the rules for where on the DNA strand the nucleosomes will be situated. Their findings appeared today in Nature.
The benefits of this discovery could be numerous and far reaching...
The team's findings provided insight into another mystery that has long been puzzling molecular biologists: How do cells direct transcription factors to their intended sites on the DNA, as opposed to the many similar but functionally irrelevant sites along the genomic sequence? The short binding sites themselves do not contain enough information for the transcription factors to discern between them. The scientists showed that basic information on the functional relevance of a binding site is at least partially encoded in the nucleosome positioning code: The intended sites are found in nucleosome-free segments, thereby allowing them to be accessed by the various transcription factors. In contrast, spurious binding sites with identical structures that could potentially sidetrack transcription factors are conveniently situated in segments that form nucleosomes, and are thus mostly inaccessible.
Since the proteins that form the core of the nucleosome are among the most evolutionarily conserved in nature, the scientists believe the genetic code they identified should also be conserved in many organisms, including humans. Several diseases, such as cancer, are typically accompanied or caused by mutations in the DNA and the way it organizes into chromosomes. Such mutational processes may be influenced by the relative accessibility of the DNA to various proteins and by the organization of the DNA in the cell nucleus. Therefore, the scientists believe that the nucleosome positioning code they discovered may aid scientists in the future in understanding the mechanisms underlying many diseases.